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Adsorption phenomena in amphiphilic systems
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The wetting behavior of a ternary mixture of oil, water, and amphiphile in the presence of a surface is
studied. An interface model carefully derived from an underlying Ginzburg-Landau theory is introduced, which
contains position dependent rigidity and stiffness coefficients. Using this model we predict a rich surface phase
diagram containing thin-thick, first-order, and continuous wetting transitions. Application of the model to other
interface behavior in these mixtures is also addressed.@S1063-651X~99!51209-9#

PACS number~s!: 68.45.Gd, 05.70.Fh, 68.10.2m, 82.70.Kj
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A rich variety of structures may be observed when a sm
amount of amphiphile is added to a mixture of oil and wa
@1#. These include micellar solutions, the lamellar phase~a
stack of monolayers separated by oil-rich or water-rich
gions!, and a microemulsion or middle phase characteri
by a random array of monolayers. Due to this diverse ra
of phases and associated critical behavior these mixt
have attracted much attention in the statistical physics c
munity @2–9#. Furthermore, thanks to a wide range of app
cations in the petroleum, paint, and pharmaceutical ind
tries, such ternary systems are of importance to a br
audience of physicists and chemists.

More specifically, from the point of view of critical phe
nomena, any system containing three or more coexis
phases is of interest because of the possibility of wett
transitions in which a macroscopic layer of one phase m
intrude at the interface between two other coexisting pha
In simple fluids, one typically considers the adsorption
one phase at a wall~which we view as a ‘‘spectator’’ phase!,
while a second phase is stable at large distances from
wall. In the context of amphiphilic systems the wetting of t
oil-water interface by the microemulsion phase has b
widely studied both analytically and experimentally. The
studies have generally been carried out in the bulk so tha
possibility of surface effects due to the presence of a wal
substrate have been largely ignored. One exception is
recent analysis of the wetting behavior of a wall-oil interfa
by the lamellar phase@10#.

In this paper we instead study the possibility of wetting
the wall-microemulsion interface by either oil-rich or wate
rich phases for systems at oil-water-microemulsion coex
ence. We show that both first- and second-order phase
sitions are possible for a given choice of surfa
enhancement, for example. The main tool we use in
analysis is an effective interface Hamiltonian, which is
functional of the thickness,l, of the adsorbed layer at th
wall. In contrast to many earlier studies we make a care
derivation of the interface model, which results in the pr
ence of position-dependent stiffness and rigidity coefficie
highly analogous to recent discoveries of Fisher and Jin@11#
for simple fluids. Later we discuss the importance of c
rectly incorporating the position dependence of the grad
terms for fluctuation effects.
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To begin we describe the derivation of the effecti
model. Consider a semi-infinite geometry with a wall in t
planez50, and usey to denote thed21 dimensional vector
displacement along this surface. Using this notation,l (y)
>0 represents the local separation of the unbinding interf
from the wall. For our toy model we assume three pha
(1, 2, and middle! with symmetry between the1 and 2
phases. We further assume that the middle phase is stab
the bulk~i.e., asz→`) and that the1 phase is preferred a
the wall. We base our derivation on a Ginzburg-Landau fr
energy functional

H@f#5E dr$Lv@f,¹f,¹2f#1d~z!Ls@f,¹f#%, ~1!

whereLv5c(¹2f)21g(f)(¹f)21 f (f)2mf is the stan-
dard single order-parameter free-energy density for
water-amphiphile mixtures in the absence of a wall. In t
formulation the amphiphile degrees of freedom are cons
ered integrated out, but with their properties influencingc, f,
and g. For our study the chemical potential difference b
tween oil and water,m, is zero, while the bulk free-energ
density,f (f), has three coexisting minima corresponding
the homogeneous1, 2, and middle phases. From compa
son with scattering experiments we knowg(f) is negative in
the middle~microemulsion! phase but is positive in the pur
1 and2 phases. Finally,c is always positive, stabilizing the
system, and for simplicity may be assumed constant.
wall enters through the surface density termLs5msf
1vsf

21gs(¹f)2 characterized by threesurface param-
eters. The local chemical potential,ms , describes the prefer
ence of the wall for the1 phase, whilevs is the surface
enhancement. Finally, there is a gradient parameter,gs ,
which has recently been associated with the local chem
potential of the amphiphile at the wall@10#.

In order to derive an interface Hamiltonian from th
model we follow the approach of Fisher and Jin@11# ~FJ!,
and introduce a crossing constraint definition of the coll
tive coordinatel. This involves finding the density profile
f(y,z), which satisfies the constraintf„y,z5 l (y)…5fX

wherefX is a reference crossing value. We denote the c
strained profile byfJ„y,z; l (y)…. In what follows we con-
sider situations in which the order-parameter profile is os
latory so that we typically choosefX50. To ensure that the
R2472 © 1999 The American Physical Society
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interface location is uniquely defined we demand thatl is the
location where the profilefirst crosses the reference valu
The key observation of FJ is that it is most convenient
expand about theplanar constrained profile,fp(z; l p),
which satisfiesfp(z5 l p)5fX ;y. For the ternary am-
phiphilic system the constrained profiles are well defined
contain no singularities, this is in sharp contrast to the c
of simple fluids where more care must be taken to control
profile smoothness@12#. Following this approach we deriv
an expansion for fJ of the form fJ„y,z; l (y)…
5fp„z; l (y)…1 B1„z; l (y) … (¹2l ) 1 B2 „z; l (y) …(¹ l )2 1 •••

where the ellipsis represents higher order gradient terms
do not play a role in our analysis and the functionsfp , B1,
andB2 satisfy simple differential equations@13#.

We define our interface modelHI@ l # using the saddle-
point identificationHI@ l (y)#[H@fJ„r ; l (y)…#. In this way
we derive the effective interface Hamiltonian

HI@ l #5E dyH 1

2
k~ l !~¹2l !21

1

2
s~ l !~¹ l !21W~ l !J . ~2!

Here W( l )5*0
`dz$Lv@fp ,]fp /]z,]2fp /]z2#

1d(z)Ls@fp ,]fp /]z#% is the interface potential which de
scribes the interaction of the fluctuating interface with t
wall. Further, k( l )5*0

`dz$2c(]fp /] l )212g(fp)„]fp /
] l …B1 1 8c „ ]2fp /]z2

…B2% 12c„B1 „ ]2fp /]z] l )2 ( ]B1 /
]z…„]fp /] l )…uz50 and s( l )5*0

`dz$4c„]2fp /]z2
…(]2fp /

] l 2
…1 2g(fp)(]fp /] l )2% 1 2gs(]fp /] l )2uz50 are posi-

tion dependentcurvature and stiffnesscoefficients, respec
tively. We note that similar models have recently been p
posed by other authors@14# for free interfaces and, indee
for that case, our analysis is formally analogous to the eig
function approach of Gompper and Kraus at a Gauss
level. However, the method we have outlined here natur
allows the inclusion of walls, while accurately incorporatin
the corresponding boundary conditions. This is crucial
our study of wetting of the wall-middle phase interface
the 1 phase where, to begin, we useW( l ) to determine the
mean-field phase diagram. In particular we examine the fo
of the binding potential for given bulk and surface para
eters, and observe whether the global minimum of the fu
tion is at a finite or infinite distance. In the first case w
describe the interface as bound to the wall and hence t
can be at most a thin~partial! wetting layer, while in the
second case the interface is unbound and the wall is we
the 1 phase.

In order to facilitate quantitative calculations we must fu
ther specify the functionsf (f) and g(f) appearing in the
Ginzburg-Landau model. For analytic purposes it is con
nient to use a piecewise parabolic model, however, we n
that, in general, quantitatively similar results are anticipa
if a f6 model is used instead@15#. Hence we have

f ~f!5H v1~f2f1!2, f.f0,1

vmf21 f 0 , f0,2,f,f0,1

v2~f2f2!2, f,f0,2 ,

~3!

wheref0,1 andf0,2 are chosen to ensure thatf is continu-
ous, and we requiref 050 for three-phase coexistence.
this model g(f) is assumed piecewise constant@1#, with
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g(f.f0,1)5g1 , g(f0,2,f,f0,1)5gm , and g(f
,f0,2)5g2 . For simplicity we consider only symmetri
systems wheref152f251, v15v2 , andg15g2 . In
what follows we have fixed the parameter values asc51,
v154, vm51, g154.5, andgm521.

Using this model we predict that wetting occurs in o
system. For example, whengs51 andms522, we find a
first-order wetting transition as we reducevs from a large
positive value. Typical binding potentials on each side of t
transition are shown in Fig. 1; forvs.0.527 the potential
has its global minimum atl'1.8, while for vs,0.527 the
global minimum is at infinity, but a local minimum remain
at l'1.8 untilvs520.161. This point may be identified as
metastable limit beyond which the only minimum of the p
tential is at infinity. A similar limit exists atvs51 when the
extremum at infinity changes nature from a minimum to
maximum. Some explanation of the kinks visible in the i
terface potential is appropriate at this point. These arise
cause the width of the interface is not fully determin
within the piecewise parabolic model and must be fou
from further minimization@1#. The optimal width varies with
l and displays discontinuities for smalll when the crossing
criterion is accurately applied. These problems can
avoided by the use of smooth free-energy densitiesf (f) and
g(f).

For some choices of surface parameters we see very
ferent behavior where the location of the global minimum
W( l ) diverges continuously as we approach the transit
boundary, corresponding to a continuous wetting transiti
In general, for a given choice of surface parametergs , we
find first-order transitions for smaller values ofumsu and con-
tinuous transitions for largerumsu. Recall that we only con-
sider negativems values here as appropriate for wetting b
the 1 phase, however, due to the symmetry of our syst
we predict analogous behavior for positivems with the 2
phase wetting the wall-middle phase interface. The surf
phase diagram for thegs51 case is given in Fig. 2, showin
first-order ~FW! and continuous wetting transition phas
boundaries. The two lines meet at a tricritical point~TCP!,

FIG. 1. Binding potentials for bound (vs50.70) and unbound
(vs50.35) interfaces with surface parametersgs51 andms522.
The potentials are calculated in the symmetric piecewise parab
model with parametersc51, v154, vm51, g154.5, andgm5
21.
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which is also the terminus for the two metastable lim
~dashed lines! discussed above. In the vicinity of the TC
we further find a~first-order! thin-thick transition, which
may precede the wetting transition~see inset of Fig. 2!. The
corresponding thin-thick transition line extends from a trip
point on the FW line and terminates at a surface critical po
where the layer thicknesses on each side of the trans
become the same. We stress that the thin-thick transitio
not an artifact of the crossing criterion definition ofl but can
be understood in terms of oscillations in the binding pot
tial. These are on the scale of 1025 and hence are not visibl
in Fig. 1, however, close to TCP, both the depth of the m
mum at finitel and the height of the potential barrier are
this order and the oscillations become important. In pr
ciple, further layering transitions may also be expected
though we have been unable to locate such transitions du
the very small energy differences involved.

We have made the arbitrary choice ofgs51 since we do
not knowa priori what is a reasonable value for this para
eter. Repeating our analysis for other values ofgs ~including
gs<0) results in a qualitatively identical picture. The ma
quantitative difference is that we find a larger region of t
first-order wetting transition when we use smaller, or ne
tive, values ofgs ~that is, the FW transition line extends ov
a wider range ofms values than shown in Fig. 2!. Hence we
find transitions occurring for positive and negative values
all three surface parameters and consequently believe
wetting transition should be accessible in experimental s
tems. To that end we propose an experimental study o
ternary system containing nonionic amphiphiles, such as
n-alkyl polyglycol ethers, in the presence of a substrate p
treated to favor the1 phase @16#. The temperature–
amphiphile-concentration phase diagram of such mixture
well understood@1# so it is straightforward to prepare th
system in the middle phase, while the appearance of
lamellar phase is prevented by the strength of the a
phiphiles. Thus initially only a finite layer of the favored1
phase will be adsorbed at the substrate, and will mani

FIG. 2. Mean-field surface phase diagram for the casegs51,
calculated within the symmetric piecewise parabolic model w
parametersc51, v154, vm51, g154.5, andgm521. First-
order ~FW! and continuous~CW! wetting phase boundaries ar
shown by solid lines; the two regimes are separated by a tricrit
point ~TCP!. In the vicinity of TCP a thin-thick transition can occu
~see inset!. The thin-thick transition boundary begins at a trip
point ~TP! on the FW line and terminates at a surface critical po
~SCP!. The dashed lines denote the metastable limits discusse
the main text.
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itself, for example, in the scattering intensity of x rays@17#.
The predicted wetting transition can now be induced by
proaching the three phase coexistence region~in practice this
may be achieved by decreasing the amphiphile concentra
at fixed temperature! and will result in a growth of the laye
thickness. In such systems the presence of van der W
forces is sure to influence the phase behavior we have
dicted above. The magnitude of the fluid-fluid forces is a
ticipated to be rather small because the densities of all th
phases are very close to one another. Hence we only con
the inclusion of a long-range substrate potential, which
fectively adds a term of the forma/ l 2 to the interface poten-
tial. The Hamaker constant,a, is proportional to the differ-
ence in densities of the wetting phase and the bulk ph
Hence if we assume that the adsorbed phase is the oil-
one, thena,0 and the unbinding transition is suppresse
However, if the adsorbed phase is the water-rich one t
a.0 and the unbinding transition remains, although on
first-order transitions will now be observed. Consequen
we predict first-order wetting transitions should be expe
mentally observable in the proposed system provided that
substrate is treated, such that the~denser! water-rich phase is
preferred.

For completeness we show examples of the gradient te
s( l ) and k( l ) in Fig. 3. As l→`, these functions tend to
constants,s` and k` , representative of a free1 phase-
middle phase interface. Distortions of the interface due to
presence of the wall account for the position dependenc
smaller l, where both functions dip below their bulk value
@18#. This position dependence is important for analyzing
effect of fluctuations on the predicted wetting behavior b
cause, upon applying functional renormalization group~RG!
techniques to the model~2!, we find the flow equation for the
binding potential depends nontrivially on the functio
Ds( l )[s( l )2s` and Dk( l )[k( l )2k` . Solving the RG
equations is beyond the scope of this paper, but we antici
that the wetting transition remains and is probably alwa
first order in character; hence the mean-field continuous t

al

t
in

FIG. 3. Stiffness,s, and rigidity,k, calculated in the symmetric
piecewise parabolic model with parametersc51, v154, vm51,
g154.5, andgm521, and surface parametersgs51, ms522,
andvs50.45.
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sition is driven fluctuation induced first order@11,13#.
Furthermore, the importance of these terms extends

beyond the specific system considered in this paper.
Hamiltonian model~2! is valid for any situation where ther
are interactions between interfaces in a ternary amphiph
system. Hence two fluctuating lamallae separated by a
tancel (y) should be modeled using the same Hamiltoni
~It is not justified to assume that the rigidity and stiffne
may be considered constant.! So, for example, even if a
single lamallae may be modeled as a tensionless inter
(s`50), an important position-dependent stiffness contrib
tion remains when a stack of such lamallae is studied. F
ther, our model may be used to explain small-angle x-
scattering measurements, of the effective compressibilit
an asymmetric lamellar stack, which show clear discrep
cies with corresponding theoretical predictions@19#. The
compressibility can be directly associated with the effect
rigidity of the stack. If we use Eq.~2! to model interactions
between each pair of layers in the stack, we find an ove
effective rigidity which is a function of, e.g.,l 1 and l 2, the
thicknesses of the oil and water layers, respectively. T
position-dependent function must be used in place of
assumed constant within the theory in order to compare w
the experiments. This conclusion is supported by a rec
Monte Carlo study of a three layer stack by Netz@20#, which
.
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found that the effective rigidity is precisely a function o
l 1 / l 2.

In conclusion, we have introduced a technique for ac
rately deriving an effective interface model suitable for stu
ies of unbinding effects in ternary amphiphilic systems. T
model is applicable to situations in which two fluctuatin
interfaces are interacting~such as in the lamellar phase! and
to study unbinding and adsorption effects, where exter
walls or surfaces are present. In contrast to standard phen
enological approaches the model contains positi
dependent stiffness and rigidity terms, which are essentia
capture some of the essential physics found in these com
mixtures~e.g., the effective compressibility in an asymmet
lamellar stack!. We have applied our model to study th
possibility of wetting of the wall-microemulsion interface b
the water-rich phase, as might be appropriate in the anal
of confined microemulsions. We predict a rich mean-fie
surface phase diagram containing thin-thick transitions
both continuous and first-order wetting transitions.
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