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Adsorption phenomena in amphiphilic systems
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The wetting behavior of a ternary mixture of oil, water, and amphiphile in the presence of a surface is
studied. An interface model carefully derived from an underlying Ginzburg-Landau theory is introduced, which
contains position dependent rigidity and stiffness coefficients. Using this model we predict a rich surface phase
diagram containing thin-thick, first-order, and continuous wetting transitions. Application of the model to other
interface behavior in these mixtures is also addred&tD63-651X99)51209-9

PACS numbe(s): 68.45.Gd, 05.70.Fh, 68.1:6m, 82.70.Kj

A rich variety of structures may be observed when a small To begin we describe the derivation of the effective
amount of amphiphile is added to a mixture of oil and watermodel. Consider a semi-infinite geometry with a wall in the
[1]. These include micellar solutions, the lamellar phése planez=0, and use to denote thel— 1 dimensional vector
stack of monolayers separated by oil-rich or water-rich redisplacement along this surface. Using this notatidy,)
gions, and a microemulsion or middle phase characterized® 0 represents the local separation of the unbinding interface
by a random array of monolayers. Due to this diverse rang&om the wall. For our toy model we assume three phases
of phases and associated critical behavior these mixturest, —, and middlg¢ with symmetry between the- and —
have attracted much attention in the statistical physics comPhases. We further assume that the middle phase is stable in

munity [2—9]. Furthermore, thanks to a wide range of appli- the bulk(i.e., asz—c) and that thet+ phase is preferred at
cations in the petroleum, paint, and pharmaceutical indust-he wall. We base our derivation on a Ginzburg-Landau free-

tries, such ternary systems are of importance to a broa8N€rgy functional

audience of physicists and chemists.
More specifically, from the point of view of critical phe- H[ ¢>]:J dr{E\,[¢>,V¢>,V2¢]+ 8(z) Ly V], (1)
nomena, any system containing three or more coexisting

phases is of interest because of the possibility of Wetti”q/vhereﬁ =c(V2)2+ 2 _ :
o . ) . = 9(d) (V) +1(d)— nd is the stan-
transitions in which a macroscopic layer of one phase mayj,q si%gle order-parameter free-energy density for oil-

intrude at the interface between two other coexisting phasegyater-amphiphile mixtures in the absence of a wall. In this
In simple fluids, one typically considers the adsorption offormylation the amphiphile degrees of freedom are consid-
one phase at a walvhich we view as a “spectator” phase  ered integrated out, but with their properties influenaing
while a second phase is stable at large distances from thgnd g. For our study the chemical potential difference be-
wall. In the context of amphiphilic systems the wetting of thetween oil and watery, is zero, while the bulk free-energy
oil-water interface by the microemulsion phase has bee@density,f(¢), has three coexisting minima corresponding to
widely studied both analytically and experimentally. Thesethe homogeneous, —, and middle phases. From compari-
studies have generally been carried out in the bulk so that thson with scattering experiments we kngé) is negative in
possibility of surface effects due to the presence of a wall othe middle(microemulsion phase but is positive in the pure
substrate have been largely ignored. One exception is the and— phases. Finallyc is always positive, stabilizing the
recent analysis of the wetting behavior of a wall-oil interfacesystem, and for simplicity may be assumed constant. The
by the lamellar phasglL0]. wall enters through the surface density terfi= us¢p

In this paper we instead study the possibility of wetting of + ws¢*+9s(V ¢)* characterized by thresurface param-
the wall-microemulsion interface by either oil-rich or water- eters The local chemical potentiglis, describes the prefer-
rich phases for systems at oil-water-microemulsion coexistence of the wall for thet phase, whilew, is the surface
ence. We show that both first- and second-order phase traehhancement. Finally, there is a gradient parameger,
sitions are possible for a given choice of surfacewhich has recently been associated with the local chemical
enhancement, for example. The main tool we use in oupotential of the amphiphile at the w4llL0].
analysis is an effective interface Hamiltonian, which is a In order to derive an interface Hamiltonian from this
functional of the thicknesd, of the adsorbed layer at the model we follow the approach of Fisher and Jir] (FJ),
wall. In contrast to many earlier studies we make a carefulnd introduce a crossing constraint definition of the collec-
derivation of the interface model, which results in the prestive coordinatel. This involves finding the density profile
ence of position-dependent stiffness and rigidity coefficientsp(y,z), which satisfies the constraing(y,z=1(y))= ¢*
highly analogous to recent discoveries of Fisher andlh ~ where ¢* is a reference crossing value. We denote the con-
for simple fluids. Later we discuss the importance of cor-strained profile by¢=(y,z;I(y)). In what follows we con-
rectly incorporating the position dependence of the gradiensider situations in which the order-parameter profile is oscil-
terms for fluctuation effects. latory so that we typically choos¢*=0. To ensure that the
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interface location is uniquely defined we demand thatthe 0.3
location where the profildirst crosses the reference value. W(l)
The key observation of FJ is that it is most convenient to

expand about theplanar constrained profile,¢.(z;!,),

which satisfies¢, (z=1.)=¢* Vy. For the ternary am-

phiphilic system the constrained profiles are well defined and 0.1 4
contain no singularities, this is in sharp contrast to the case
of simple fluids where more care must be taken to control the

0.2 -

profile smoothnesgl2]. Following this approach we derive 0.0
an expansion for ¢z of the form ¢=(y,zI(y))
=¢(z:1(y)) + Bo(Z1(¥)) (V) + Bz (D)V)Z + - - o1 =070

where the ellipsis represents higher order gradient terms that
do not play a role in our analysis and the functiehs, B,
andB, satisfy simple differential equatiori43]. 0.2
We define our interface modé¥[1] using the saddle- 2 4 6 8 10
point identification™,[1(y)]=H[ ¢=(r;|(y))]. In this way !
we derive the effective interface Hamiltonian

FIG. 1. Binding potentials for boundw=0.70) and unbound
1 1 (ws=0.35) interfaces with surface parametggs-1 andug=—2.
H[1]= f dy(—K(I )(VZD)2+ = o(D(VDH2+W() . (2) The potentials are calculated in the symmetric piecewise parabolic
2 2 model with parameters=1, w,=4, w,=1, g,=4.5, andg,,=

Here W)= [3dZA L b 0l 02,0% D 12%]

+8(2)Ld ¢, ,d¢.,13Z]} is the interface potential which de- 9(¢>¢bo+)=0+, 9(Po-<Pd<¢o.)=0gm, and g(¢
scribes the interaction of the fluctuating interface with the<¢o-)=9-. For simplicity we consider only symmetric
wall. Further, «(1)=[5dz{2c(dd, /)2 +29(d,) (I,  Systems wherep,=—¢_=1, o =w_, andg,=g_. In
) By + 8¢ (2, 197%)B,} +2¢(B1 (2, 1dzdl)— (9B,/  What follows we have fixed the parameter valuescasl,
02)(0¢191))| =0 and o(l)=[5d2{4c(?p .02, @+ =4 om=1,0,=45 andgy="1. .
a2y + 29(d,) (9. 1912 + 293 131)2|,o are posi- Using this model we predict that wetting occurs in our
tion dependenturvature and stiffnesscoefficients, respec- SyStem. For example, whegy=1 and us=—2, we find a
tively. We note that similar models have recently been profirst-order wetting transition as we redueg from a large
posed by other authofd4] for free interfaces and, indeed p05|t|ye value. Typ|call bmdmg potentials on each side qf this
for that case, our analysis is formally analogous to the eiger{ransition are shown in Fig. 1; fops>0.527 the potential
function approach of Gompper and Kraus at a GaussiaR@S its global minimum at~1.8, while for »s<0.527 the
level. However, the method we have outlined here naturallyglobal minimum is at infinity, but a local minimum remains
allows the inclusion of walls, while accurately incorporating @t/ ~1.8 untilws=—0.161. This point may be identified as a
the corresponding boundary conditions. This is crucial formetastable limit beyond which the only minimum of the po-
our study of wetting of the wall-middle phase interface bytential is atinfinity. A similar limit exists abs=1 when the
the + phase where, to begin, we u#¢) to determine the ~€xtremum at infinity changes nature from a minimum to a
mean-field phase diagram. In particular we examine the forffn@ximum. Some explanation of the kinks visible in the in-
of the binding potential for given bulk and surface param-terface potential is appropriate at this point. These arise be-
eters, and observe whether the global minimum of the funcc@use the width of the interface is not fully determined
tion is at a finite or infinite distance. In the first case weWithin the piecewise parabolic model and must be found
describe the interface as bound to the wall and hence thefgom further minimizatior{1]. The optimal width varies with
can be at most a thifpartia) wetting layer, while in the | a@nd displays discontinuities for smalwhen the crossing

second case the interface is unbound and the wall is wet bifiterion is accurately applied. These problems can be

the + phase. avoided by the use of smooth free-energy densft{gly and
In order to facilitate quantitative calculations we must fur- 9(¢)- _ _
ther specify the function$(#) and g(¢) appearing in the For some choices of surface parameters we see very dif-

Ginzburg_Landau model. For ana|ytic purposes itis Conve.ferent behavior where the location of the glObal minimum of
nient to use a piecewise parabolic model, however, we not¥/(/) diverges continuously as we approach the transition
that, in general, quantitatively similar results are anticipated?oundary, corresponding to a continuous wetting transition.

if a #° model is used instedd.5]. Hence we have In ge_neral, for a gi\_/(_an choice of surface parameter we
find first-order transitions for smaller values|gfy| and con-
o (=) d>do. tinuous transitions for largdug|. Recall that we only con-
_ 2, f <d<d sider negativeug values here as appropriate for wetting by
f(¢)=1 @md+To, bo- 0.+ @) the+ phase, however, due to the symmetry of our system
w_(¢p—¢_)% ¢<do-, we predict analogous behavior for positiye with the —

phase wetting the wall-middle phase interface. The surface
where ¢, . and ¢, _ are chosen to ensure thiais continu-  phase diagram for thg;=1 case is given in Fig. 2, showing
ous, and we requiré,=0 for three-phase coexistence. In first-order (FW) and continuous wetting transition phase
this modelg(¢) is assumed piecewise constdif, with boundaries. The two lines meet at a tricritical po{MCP),
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FIG. 2. Mean-field surface phase diagram for the aasel,
calculated within the symmetric piecewise parabolic model with
parameterc=1, w,=4, w,=1, g.=4.5, andg,,=—1. First- T T

order (FW) and continuougCW) wetting phase boundaries are 4 6 8

shown by solid lines; the two regimes are separated by a tricritical i

point (TCP). In the vicinity of TCP a thin-thick transition can occur

(see insét The thin-thick transition boundary begins at a triple  FIG. 3. Stiffnessg, and rigidity, «, calculated in the symmetric
point (TP) on the FW line and terminates at a surface critical pointpiecewise parabolic model with parametersl, v, =4, o,=1,
(SCP. The dashed lines denote the metastable limits discussed @+ =4.5, andgn,=—1, and surface parametegg=1, us=—2,
the main text. and ws=0.45.

which is also the terminus for the two metastable limitsitself, for example, in the scattering intensity of x rdyg].
(dashed lingsdiscussed above. In the vicinity of the TCP, The predicted wetting transition can now be induced by ap-
we further find a(first-orde) thin-thick transition, which proaching the three phase coexistence rediopractice this
may precede the wetting transitigsee inset of Fig. 2 The  may be achieved by decreasing the amphiphile concentration
corresponding thin-thick transition line extends from a tripleat fixed temperatujeand will result in a growth of the layer
point on the FW line and terminates at a surface critical pointhickness. In such systems the presence of van der Waals
where the layer thicknesses on each side of the transitioforces is sure to influence the phase behavior we have pre-
become the same. We stress that the thin-thick transition idicted above. The magnitude of the fluid-fluid forces is an-
not an artifact of the crossing criterion definitionldfut can  ticipated to be rather small because the densities of all three
be understood in terms of oscillations in the binding potenphases are very close to one another. Hence we only consider
tial. These are on the scale of T0and hence are not visible the inclusion of a long-range substrate potential, which ef-
in Fig. 1, however, close to TCP, both the depth of the mini-fectively adds a term of the form/|? to the interface poten-
mum at finitel and the height of the potential barrier are of tial. The Hamaker constana, is proportional to the differ-
this order and the oscillations become important. In prin-ence in densities of the wetting phase and the bulk phase.
ciple, further layering transitions may also be expected alHence if we assume that the adsorbed phase is the oil-rich
though we have been unable to locate such transitions due tine, thena<0 and the unbinding transition is suppressed.
the very small energy differences involved. However, if the adsorbed phase is the water-rich one then
We have made the arbitrary choicegy=1 since we do a>0 and the unbinding transition remains, although only
not knowa priori what is a reasonable value for this param-first-order transitions will now be observed. Consequently,
eter. Repeating our analysis for other valuegofincluding  we predict first-order wetting transitions should be experi-
0s=0) results in a qualitatively identical picture. The main mentally observable in the proposed system provided that the
quantitative difference is that we find a larger region of thesubstrate is treated, such that tdenser water-rich phase is
first-order wetting transition when we use smaller, or negapreferred.
tive, values ofy, (that is, the FW transition line extends over  For completeness we show examples of the gradient terms
a wider range ofug values than shown in Fig.)2Hence we o (1) and «(I) in Fig. 3. Asl—x, these functions tend to
find transitions occurring for positive and negative values ofconstants,o,, and «.., representative of a free- phase-
all three surface parameters and consequently believe thiaiddle phase interface. Distortions of the interface due to the
wetting transition should be accessible in experimental syspresence of the wall account for the position dependence at
tems. To that end we propose an experimental study of amallerl, where both functions dip below their bulk values
ternary system containing nonionic amphiphiles, such as thgL8]. This position dependence is important for analyzing the
n-alkyl polyglycol ethers, in the presence of a substrate preeffect of fluctuations on the predicted wetting behavior be-
treated to favor the+ phase[16]. The temperature— cause, upon applying functional renormalization gréR()
amphiphile-concentration phase diagram of such mixtures igechniques to the modé?), we find the flow equation for the
well understood 1] so it is straightforward to prepare the binding potential depends nontrivially on the functions
system in the middle phase, while the appearance of thAo(l)=0(l)— 0. and Ax(l)=«(l)— k... Solving the RG
lamellar phase is prevented by the strength of the amequations is beyond the scope of this paper, but we anticipate
phiphiles. Thus initially only a finite layer of the favored  that the wetting transition remains and is probably always
phase will be adsorbed at the substrate, and will manifedirst order in character; hence the mean-field continuous tran-
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sition is driven fluctuation induced first ordgt1,13. found that the effective rigidity is precisely a function of
Furthermore, the importance of these terms extends fdr /I,.

beyond the specific system considered in this paper. The In conclusion, we have introduced a technique for accu-

Hamiltonian model2) is valid for any situation where there rately deriving an effective interface model suitable for stud-

are interactions between interfaces in a ternary amphiphili¢es of unbinding effects in ternary amphiphilic systems. The

system. Hence two fluctuating lamallae separated by a dighodel is applicable to situations in which two fluctuating

tancel (y) should be modeled using the same Hamiltonianinterfaces are interactinguch as in the lamellar phasend

(it is not justified to assume that the rigidity and stiffness@ Study unbinding and adsorption effects, where external

may be considered constanSo, for example, even if a walls or surfaces are present. In contrast to standard phenom-

single lamallae may be modeled as a tensionless interf(:u:‘:ff[(;ol""g'caI approaches the model contains position-

(0.=0), an important position-dependent stiffness contribu- pendent stiffness and rigidity terms, which are essential to

tion remains when a stack of such lamallae is studied. Fur(_:apture some of the essential physics found in these complex

th del b dt lai I | mixtures(e.g., the effective compressibility in an asymmetric
er, our model may De used 1o expliain small-angié X-ray, q| g stack We have applied our model to study the

rE)ossibility of wetting of the wall-microemulsion interface by

an asymmetric lamellar stack, which show clear discrepang,q \yater-rich phase, as might be appropriate in the analysis
cies with corresponding theoretical predictiof9]. The ot confined microemulsions. We predict a rich mean-field

compressibility can be directly associated with the effectivegif4ce phase diagram containing thin-thick transitions and
rigidity of the stack. If we use Eq2) to model interactions 4t continuous and first-order wetting transitions.

between each pair of layers in the stack, we find an overall

effective rigidity which is a function of, e.gl; andl,, the We thank J.O. Indekeu and R. Blossey for helpful com-
thicknesses of the oil and water layers, respectively. Thisnents and discussions. This research has been supported by
position-dependent function must be used in place of thehe EC TMR ProgramméContract No. ERB-FMBI-CT96-
assumed constant within the theory in order to compare witli840, Project No. VIS/97/01 of the Flemish Government,
the experiments. This conclusion is supported by a recerthe Inter-University Attraction PoledUAP), and the Con-
Monte Carlo study of a three layer stack by NE28], which  certed Action Research Programii@OA).
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